
International Journal of Applied Engineering Research Transaction
ISSN Print : xxxx-xxxx | ISSN Online : xxxx-xxxx
Frequency : Quarterly
Language : English
Website:

9

Review Article

Parallel genetic algorithm based on construction of gene pool in the ordinary

network for TSP

Xiaoqin Fan

General Education Department, Guangzhou Panyu Polytechnic, Guangzhou 511583, China

*Corresponding Author

Xiaoqin Fan

Article History: | Received: 20.06.2022 | Accepted: 24.07.2022 | Published: 25.08.2022|

Abstract: Though using parallel evolutionary algorithm to solve large-scale TSP problems is efficient, the parallel computer costs too

much and the algorithm is not easy to expand. To address this issue, I propose a parallel genetic algorithm based on a gene pool under

the existing network. To replace the group-genes in the evolutionary algorithm with the genes from the gene pool, the algorithm

conducts greedy algorithm. The host process conducts greedy algorithm and improved evolutionary algorithm of Inver-over operator

while the child process performs the improved hybrid genetic algorithms. Simulation results demonstrate that this algorithm achieves

a better solution.

Keywords: TSP; Reverse; Greedy gene pool; Parallel algorithms.
Copyright @ 2022: This is an open-access article distributed under the terms of the Creative Commons Attribution license which permits unrestricted

use, distribution, and reproduction in any medium for non commercial use (NonCommercial, or CC-BY-NC) provided the original author and source

are credited.

INTRODUCTION

TSP (Travelling Salesman Problem), as an ideal problem，its research findings are not to be applied directly, but

widely translated into many combinatorial optimized problems, such as cargo distribution of large chain stores, PCB

drilling, genetic detection and etc.. They can be all abstracted to TSP problem.Therefore,the study of TSP problems and

their solutions are of great significance both theoretically and practically.

The perfect method to solve the TSP problem is global search method. Due to the limitation of computer operating

ability, when n is relatively big, with global search method, it seems impossible to find out the accurate optimal solution

but only approximate solution. So far, there is no effective algorithm to solve this kind of problem, thus any simplified

method to solve TSP will attract much attention and evaluation. Many scholars have great interest in TSP and many

methods solving TSP emerg, including evolutionary algorithm [1,2].

Genetic Algorithm for TSP is of higher efficiency
[3,4]

, but because of the increasing “n”, the numbers of the cities,

using genetic algorithm to solve TSP resulting worse solution and decreased convergence rate. Here I propose parallel

genetic algorithm to address this issue. However, huge investment in large parallel computer system is the barrier for

expansion. When the number of cities in a TSP is relatively big, a certain number of parallel computers are needed for the

tasks.

So this paper focuses on the construction of local gene pool and greedy gene pool under the common computer

network, by using greedy algorithm and the improved Inver-over operator[5]in the child process, implementing dynamic

optimization to the gene pool. In the main process, hybrid genetic algorithm based on the gene pool is applied to

dynamically update the elite groups, replacing genes from the gene-group with genes from gene-library to improve the

speed of evolutionary algorithms and the quality of the result.

This paper is divided into five sctions.

The first section introduces the research background, the main contents, the purpose and the significance of the

research.

 The Second section is background knowledge. TSP, genetic algorithm, the present situations and the existing problems

of using genetic algorithm to solve TSP are briefly introduced.

Xiaoqin Fan: Int. J. Appl. Eng. Res. Trans.;.;; Vol-1, Iss- 1 (July-Sep 2022): 9-15

10

The third section deals with the method to construct

gene pool. It mainly introduces the method to build

partial gene pool and greedy gene pool, and the

algorithm thought of greedy gene pool.

The fourth section describes improvement of Inver -

over operator

The fifth section presents the thought of greedy gene

pool and the method of implementing parallel

algorithm.

Based on normal computer simulation experiment

under the general network, the sixth section selects

some samples from TSP case library (TSPLIB) which is

internationlly agreed, to verify the validity of the

algorithm described.

The last section comes to a conclusion, and points

out the deficiency of this article and the direction of

further research.

INTRODUCTION OF TSP AND GENETIC

ALGORITHMS

TSP long-standing problem is a typical

combinatorial optimization problem and has proven to

be NP-complete problem. The study has attracted many

scholars and there have been a large number of

algorithms for solving TSP. Among them is

evolutionary algorithm [1, 2]. Known as the traveling

salesman problem or Wayfaring Salesman Problem,

TSP problem may be summarized as follows: There are

n cities. Starting from a given city, how does a traveling

salesman find out the shortest way back to the starting

city after having visited all the n cities? Its

mathematical model is as follows: Given a graph

),(EVG  , the edge Ee , a non-negative weights

)(eW , find sG' Hamiltonian cycle C , making C

the total weight)(CW the smallest, where





EEe

eWCW
'

)()([3,4]. It is well-known

combinatorial optimization problems of mathematics

field.

TSP was first mentioned in 1800. Between 1920s

and 1950s of the 20th century, people began to realize

that TSP is an NP problem [5,6]; in 1954, optimal

solution to TSP of 42 cities is obtained. Since 1954, the

scale of optimal solutions to TSP is larger and larger.

Instances with up to 13509 towns were managed to be

exactly solved in the United States in 1998. An optimal

tour through a 15,112-town instance in Germany is

computed in 2001. Nevertheless, the cost of the project

is huge. According to the report, to solve the TSP

problem between 15112 towns in the United States, 110

computers with 500 MHZ compaq Ev6Alpha processor

from Rice University and Princeton University were put

into the process. These 110 connected computers spent

22.6 years in total. In May 2004, the Swedish obtained

the optimal solution of 24978 towns.

TSP problem became increasingly popular in

scientific circles in Europe and the USA. Notable

contributions were made by George Dantzig, Delbert

Ray Fulkerson and Selmer M. Johnson at the RAND

Corporation in Santa Monica, who expressed the

problem as an integer linear program and developed the

cutting plane method for its solution. With these new

methods they solved an instance with 49 cities to

optimality by constructing a tour and proving that no

other tour could be shorter. In the following decades,

the problem was studied by many researchers from

mathematics, computer science, chemistry, physics, and

other sciences [6].

Richard M. Karp showed in 1972 that the

Hamiltonian cycle problem was NP-complete, which

implies the NP-hardness of TSP. This supplied a

mathematical explanation for the apparent

computational difficulty of finding optimal tours.

Great progress was made in the late 1970s and 1980,

when Grötschel, Padberg, Rinaldi and others managed

to exactly solve instances with up to 2392 cities, using

cutting planes and branch-and-bound.

In the 1990s, Applegate, Bixby, Chvátal, and Cook

developed the program Concorde that has been used in

many recent record solutions. Gerhard Reinelt

published the TSPLIB in 1991, a collection of

benchmark instances of varying difficulty, which has

been used by many research groups for comparing

results. In 2006, Cook and others computed an optimal

tour through an 85,900-city instance given by a

microchip layout problem, currently the largest solved

TSPLIB instance. For many other instances with

millions of cities, solutions can be found that are

guaranteed to be within 2-3% of an optimal.

The total number of possible paths of TSP and the

number of cities are increased by factorial number;

therefore, it is difficult to find out the optimal solution.

As for this problems, no matter the traditional dynamic

programming, branch and bound method, greedy

method or other recent methods, like intelligent

optimization algorithms (tabu search, simulated

annealing, genetic algorithm and artificial neural

networks, ant algorithm) and their hybrid algorithm are

of lower efficiency, and higher cost.

Genetic algorithm is a stochastic simulation of

biological evolutionary mechanisms global search and

optimization methods[6]. It automatically obtains and

optimizes the search space, and adaptively control the

search process in order to achieve the optimal solution.

General procedures for genetic algorithm optimization

problems are as follows:

1) Initialization

The population size depends on the nature of the

problem, but typically contains several hundreds or

Xiaoqin Fan: Int. J. Appl. Eng. Res. Trans.;.;; Vol-1, Iss- 1 (July-Sep 2022): 9-15

11

thousands of possible solutions. Often, the initial

population is generated randomly, allowing the entire

range of possible solutions (the search space).

Occasionally, the solutions may be "seeded" in areas

where optimal solutions are likely to be found[7].

2) Selection

During each successive generation, a proportion of

the existing population is selected to breed a new

generation. Individual solutions are selected through a

fitness-based process, where fitter solutions (as

measured by a fitness function) are typically more

likely to be selected. Certain selection methods rate the

fitness of each solution and preferentially select the best

solutions. Other methods rate only a random sample of

the population, as the former process may be very time-

consuming.

The fitness function is defined over the genetic

representation and measures the quality of the

represented solution. The fitness function is always

problem dependent. For instance, in the knapsack

problem one wants to maximize the total value of

objects that can be put in a knapsack of some fixed

capacity.

3) Genetic operators

The next step is to generate a second generation

population of solutions from those selected through a

combination of genetic operators: crossover (also called

recombination), and mutation.

4) Termination

This generational process is repeated until a

termination condition has been reached. Common

terminating conditions are:

1. A solution is found that satisfies minimum

criteria.

2. Fixed number of generations is reached.

As genetic algorithm is not affected by the

limitation of search space, requirements such as

continuity, conductivity and unimodality are not

necessary. Its robustness and implicit parallelism make

it is widely used in solving the complex problems that

are difficult to solve with the traditional methods
 [7]

,

such as combinatorial optimization, pattern recognition,

computer network optimization, etc. People have been

using genetic algorithm to solve large-scale traveling

salesman problem [6].

The Most Efficient Way To Solve Tsp Is To Use

Genetic Algorithm And Other Similar Algorithm.

Compared To The Traditional Algorithms, Genetic

Algorithm Doesn’t Take The Process Into

Consideration But Directly Focus On The Shortest

Distance So As To Obtain The Solution As Soon As

Possible. But Its Large Search Space Takes Long Time,

And It Is Sensitive To The Initial Value, So Genetic

Algorithm Effects Slowly On The Large-Scale Tsp

Problem[8]. Local Optimization Algorithm Is Very

Efficient When Applied In Local Optimal Tsp. It Solves

Instances With Up To Hundreds Of Cities In A Very

Short Period Of Time, But It Is Easy To Be Trapped In

Local Optimal Solution.

CONSTRUCTION OF GREEDY GENE POOL

Set that
k

n

kk

k VVVP 21 is a feasible path for point nVVV ,,, 21  , the total length of the loop kP is

),(),()(1

1

1

1

kk

n

n

i

k

i

k

ik VVdVVdPf 




 , where,
k

jV is the j
th

 point,),(1

k

i

k

i VVd  is the Euclidean distance between

point
k

iV and point
k

iV 1 . By using this algorithm, the total length)(kPf of the loop kP can be used to evaluate the

individual[9].

Set VjijiEnVEVG  ,|),{(},,,2,1{),,( , the coordinates of point i and point j are),(ii yx and

),(jj yx respectively, then the Euclidean distance between i and j is
22)()(),(jiji yyxxjid  . Set that

}},({ jidD  , then D is the square of nn .

Set

)1(

)1(

1321

421

431

432

)(































nn

nnij

n

n

n

n

aA











. For each point i , according to the size of),(jid , sort the

i th line of the corresponding elements in A in accordance with the order from small to large, and insert
Tn],,3,2,1[

into the first column in A , expand A to a phalanx nn , calling the phalanx local gene pool
1A .

Xiaoqin Fan: Int. J. Appl. Eng. Res. Trans.;.;; Vol-1, Iss- 1 (July-Sep 2022): 9-15

12

After the generation of local gene pool
1A , the first

m columns were selected from
1A to compose n-6 new

matrixes ,1,,7,6,  nmBm  this matrixes mB

vary in the number of points, for example, there are m

total different points in mB , which respectively

reflects the local situation in the name of a certain point

as the center, while the i th line in mB constitutes point

i’s neighbor set points. In the algorithm, each mB can

be optimized by using greedy algorithm, and according

to the computer distribution, it can be separately placed

on different computers to run independently, and thus

get a new mB , that is, the greedy gene pool. This n-6

matrix point number which varies, for example, a total

of 6 B6 in different points 7 points different from B7,

They are represented in the center of which is a point of

local conditions, such as matrix Bm constitute the first

line of the point i i neighbor point set. Algorithm runs,

for each matrix greedy algorithm implementation, and

according to the actual situation of the computer

running the distribution will be different on different

computers Bm run independently greedy algorithm,

matrix mC , where mC is greedy gene pool.

TSP problem with the greedy algorithm, the time

required does not exceed)(2mO .In general, solution

obtained with greedy algorithm is not the optimal for

TSP problem. It is necessary to optimize the greedy

gene pool in the child process, and to get the best genes

from the main process for dynamic update of the local

gene pool.

Since in the evolvement process, the genes involved

in genetic operators promoter is mainly from the

individuals, thus the quality of the evolved individual

determines the efficiency of the algorithm. If

individual’s fitness values are poor, the overall

performance of the algorithm will be affected,

especially for TSP. Although the greedy algorithm does

not guarantee optimal solution, we can use it to generate

relatively good initial population, and thus greatly

improve parallel TSP algorithm performance of the sub-

process evolution, solving the speed, quality

solution[10].

 Paper[11] presents the evolution algorithm for TSP

by constructing the gene pool which improves both the

accuracy and the speed. But its point-centered gene

pool constructs gene chip from the near points, without

considering the relationship among the points which are

among the gene fragments. So the algorithm is running

fast early, but in the latter part of the evolution of

computing, the gene pool almost had no effect on group.

Because the front part of the gene constructed in the

algorithm is of fine locality, only the first m individual

genes are extracted to construct local gene library,

reducing the length of the gene, thereby improving the

efficiency of the algorithm.

 IMPROVED INVER-OVER OPERATOR
Guo's algorithm[12-14] is one of the fastest

algorithms for solving TSP which proposed Inver-over

operator. Inver-over operator has characteristics of both

crossover and mutation which takes full advantage of

the information community, and it is much higher in

speed and quality than other simple crossover. But the

experiment also shows that when the number of cities

becomes relatively larger, its global optimization

capability dramatically declines. As a result, many

scholars have studied Inver-over operator and try to

improve it
[5, 10]

. This paper improves Inver-over

operator by labeling the all points near every vertex as

its neighboring point set, initializing each point set,

choosing the next search space instructively
[11]

. The

main steps are as follows:

Initialize the group P using the neighbor set of points

While (stop condition not satisfied)

{

For (each individual Si of groups)

 {

S’= Si;

Select a vertex c from S randomly;

While (true)

{

Generate a random number p (0 ≤ p ≤ 1);

if (p<pc) /*pc is a constant*/

{

Select vertex c’ from the remaining selected vertices from S’;

}

else

{

Randomly choose an individual from P;

Mark the selected-individual c’s next vertex as c;

 }

Xiaoqin Fan: Int. J. Appl. Eng. Res. Trans.;.;; Vol-1, Iss- 1 (July-Sep 2022): 9-15

13

if (the vertices c and c’ in S’ are adjacent)

{

break;

}

else

{

Flipped vertex c to the next vertex to the vertices between c’, c = c';

}

} /* end while*/

if (the fitness value of S’≤ Si)

{

Si = S’;

}

} / * end for*/

} / * end while*/

PARALLEL ALGORITHM BASING ON THE

GREEDY GENE POOL

Based on the greedy evolution of the gene pool,

parallel algorithm sets a computer as the mainframe of

the entire system, which runs the main process and as

the center of data exchange in the evaluation process.

The main process optimizes the elite by using the

hybrid genetic algorithm based on gene pool and Guo

Tao algorithm
[11]

. The basic steps are as follows:

(1) to generate an initial local gene pool and 6n

greedy gene pool, and to deposit these genes into the

database for sharing;(2) to write the initial control

information into an asynchronous control information

database, to prohibit the work machines to read
1A and

mB when the algorithm starts; (3) to generate
1A and

mB , and deposit them into their corresponding

database;(4) to divide the working machines based on

the n-size of the TSP problem so that it can deal

separately with one or more lines in
1A and mB ;(5) to

write control information into an asynchronous control

information database, allowing working machine to

read
1A and mB ; and store the best individuals in the

elite group into the database for the sharing of the

working machines;(6) to read from the database the

evolution elite groups and generate the optimal solution,

and then deposit it into its database s after setting every

other algebra.

Other computers in the network as a working

machine run sub-process and read the TSP from the

mainframe and obtain the corresponding gene pool. Sub

process only solves point-centered domain. The main

steps are:

(1) to copy all the data from the mainframe to the

working machine and extract genes from the

corresponding local gene pool according to

the task assigned or set (2) to generate a

number m randomly, implement the greedy

algorithm on mB , so that it becomes greedy

gene pool mC ;(3) to implement improved

Inver-over algorithms on mC ;(4) to store

mC in the mainframe to obtain the optimal

solution;(5) to obtain the gene chip with the

length of m and mC for hybridization [15];

store optimal gene in the mainframe, turn to

(3).

SIMULATION

Multiple TSP problems are selected for testing from

the paper[16]

and international general TSP instance

library TSPLIB[17]. Algorithm uses the C #

programming language in Microsoft Visual Studio 2019

Preview platform, which is configured to host CPU

Intel Core i7-1165G7@4.70GHz, memory is 16 GB.

The operating system is Windows10. The database

software is Microsoft SQL Server 2019. The working

machine connects mainframe database through

ADO.NET, carrying out the process on 50 computers in

LAN. Table 1 lists the optimal value. The optimal paths

for the first 6 problems are as in Figure 1-6, while the

optimal paths for problem pr2392 are too many to be

listed.

Figure1 Oliver30 optimal path Figure2 att48 optimal path

Xiaoqin Fan: Int. J. Appl. Eng. Res. Trans.;.;; Vol-1, Iss- 1 (July-Sep 2022): 9-15

14

Figure3 eil76 optimal path Figure4 chn144 optimal path

Figure5 a280 optimal path Figure6 TSP pcb442 optimal path

Judging From The Simulation, The Proposed

Algorithm Is Particularly Suitable For Handling Large-

Scale Tsp. As In Table 1, The Algorithm For Smaller-

Scale Tsp Is Of Less Advantage. Many Papers Propose

Optimal Solution To Small-Scale Tsp Problem, But The

Algorithm Proposed Now Is Appropriate For Large-

Scale Tsp Problem. Nevertheless, The Results Of

Large-Scale Tsp Is Rare, They Are Not Listed In Table

1.

Table 1 Tsp Algorithm Running Results

TSP optimum Size of the group Average time

oliver30 423.740563133203 50 0.2617

att48 33523.7085074356 50 0.372s

eil76 544.369052670828 50 1.374s

chn144 30353.4474810516 100 2.836s

a280 2587.80879066408 100 83s

pcb422 50935.5635917108 100 128s

pr2392 386606.457689425 100 1993.064s

CONCLUSION
This paper proposes an algorithm to solve the

problems using computers in general network instead of

parallel computer, which is economic convenient and

fast.

Simulation shows that the proposed algorithm is

feasible. When the computer configuration is low, it is

an effective way to solve tough problems. When the

scale of TSP is too large, the algorithm converges

relatively slow and the algorithm needs further

improvement.

REFERENCES

1. Baraglia R,Hidalgo J I,Perego R. A hybrid

heuristic for the traveling salesman

problem.IEEE Trans. On Evolutionary

Computation,2001;5:613-622

2. Wen Yi,PanDa-zhi. Improved Genetic

Algoithm for Traveling Salesman Problem [J].

Computer Science, 2016(S1): 90-92.

3. Sun Wen-bin,Wang Jiang. An Algorithm for TSP

Problem Based on Genetic Algorithm and Multi-

optimization Operration [J]. Geography and Geo-

Information Science, 2016, 32(4): 1-4.

4. Yang H, Kang LS, Chen YP. A gene-pool based

genetic algorithm for TSP. Wuhan University

Journal of Natural Sciences, 2003; 8: 217-223.

5. Zhai Fan,Xie Xian-hua. Study on optimal robot

task scheduling based on genetic algorithms [J].

Mathematics in practice and thory, 2020, 50(15):

143-154.

6. Clarke G, Wright J W. Scheduling of Vehicles

from a Central Depot to a Number of Delivery

Points. Opera. Res. 1964; 12:568-581.

7. Li MQ, Ji-song Kou. Basic theory and

application of genetic algorithms. Beijing:

Science Press, 2002.

8. Simin Yang, Fengjun Wang. Research on

Solving TSP with Genetic Algorithm or Branch

and Bound Method[J]. Computer Science and

Application, 2020, 10(9): 1609-1617.

9. Luo Zhiyuan,Feng Shuo, Liu Xiaofeng, et

al.Method of area coverage path planning of

multiunmanned cleaning vehicles based on step

by step genetic algorithm [J]. Journal of

Electronic Measurement and Instrumentation,

2020, 32(8): 43-50.

10. Wang,Zhen,Liu Rumin,Zhu Yangguang, et al.

Improved genetic algorithm for solving TSP

problem[J]. Electronic Measurement

Technology, 2019, 42(23):91-96.

11. Chen Siyuan,LIN Piyuan,HUANG Peijie. Pointer

Network Improved Genetic Algorithm for

Solving Traveling Salesmen Problem [J].

Computer Engineering and Applications, 2020,

56(19):231-236.

Xiaoqin Fan: Int. J. Appl. Eng. Res. Trans.;.;; Vol-1, Iss- 1 (July-Sep 2022): 9-15

15

12. Hassanat A B, Prasath V B, Abbadi M A, et al.

An improved genetic algorithm with a new

initialization mechanism based on regression

techniques[J]. Information, 2018, 9(7): 167.

13. Fu C, Zhang L, Wang X, et al. Solving TSP

problem with improved genetic

algorithm[C]//AIP Conference Proceedings. AIP

Publishing LLC, 2018, 1967(1): 040057.

14. Agrawal M, Jain V. Applying Improved Genetic

Algorithm to Solve Travelling Salesman

Problem[C]//2020 Second International

Conference on Inventive Research in Computing

Applications (ICIRCA). IEEE, 2020: 1194-1197.

15. Akter S, Nahar N, ShahadatHossain M, et al. A

new crossover technique to improve genetic

algorithm and its application to TSP[C]//2019

International Conference on Electrical, Computer

and Communication Engineering (ECCE). IEEE,

2019: 1-6.

16. Http://Www.Iwr.Uniheidelberg.De/Groups/Co

Mopt /Software/Tsplib95/．

